Randomness of motor activity and cognitive performance in people living with HIV

Peng Li^{1,2,3}, Chenlu Gao^{1,2,3}, Lei Gao^{1,2,3,4}, Robert A. Parker^{5,6,7}, Ingrid T. Katz^{6,8,9}, Monty A. Montano^{6,10}, Kun Hu^{1,2,3}

¹ Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA ² Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA ³ Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA ⁴ Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA ⁵ Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA ⁶ Harvard Medical School, Boston, MA 02115, USA ⁷ Center for AIDS Research, Harvard University, Cambridge, MA 02138, USA ⁸ Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA ⁹ Harvard Global Health Institute, Cambridge, MA 02138, USA

¹⁰ Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

Introduction

- Healthy physiological control systems exhibit complex behavior [1]
 - Neither random, nor regular
 - Hovering somewhere in between, at a critical point
- This intrinsic complexity renders fractal patterns in physiological
- Cross-sectional comparisons showed more random motor activity in people with Alzheimer's disease (AD) at larger time scales [4]

Data and signal analysis

- Continuous actigraphy lasting \bullet for ~7 days
- DFA was applied to examine • the temporal correlations
- The scaling exponent was • fitted within two regions:
 - a_1 for time scales $\leq 1.5h$

Results

• PLWH had a reduced a_1 but a similar a_2 compared to controls

• PLWH demonstrated a trend of reduction in information processing speed, but similar visual episodic memory compared to controls

outputs

• Fractal temporal process: selfsimilar patterns across multiple time scales

Fractal structure

temporal process 1-h make Man Man Man shuffled data for '16-h ול, לא הילט היה לאוריה לא לא היה היה לא היה היא אור אור אורים אורים אורים אורים אורים אורים אורים אורים אורים א

Fractal

- Detrended fluctuation analysis (DFA) [2]
 - to quantify temporal correlations across multiple time scales
 - Fractal temporal process renders an exponential function form $F(n) \sim n^{\alpha}$

Animal studies revealed a causal relationship between the randomness in motor activity at larger time scales and circadian intactness [5]

Increased randomness in activity

Numbers of available participants

a₂ was positively associated with information processing speed (i.e., negatively associated with reaction time) in PLWH but not in controls

- $\checkmark \alpha > 0.5$: signals with positive correlations;
- $\checkmark \alpha = 0.5$: uncorrelated white noise.
- $\checkmark \alpha \sim 1 \rightarrow$ the highest complexity
- ✓ Reduced α → Reduced temporal correlation (increased randomness)

- Motor activity becomes more random during aging
 - Which further speeds up with Alzheimer's progression [3]

at smaller time scales predicted increased Alzheimer's risk and faster cognitive decline in older adults [6]

Goal

- In middle (or middle-to-older) aged people living with HIV (PLWH)
- To investigate the randomness of motor activity
- To examine its relationship with neurocognitive performance

Methods

100 PLWH			500 controls
4			
Eviden <u>ce 1</u>			Matched on age, sex
		97	ethnicity, social-
	Evi	dence 2	economic status

00:00

- **Cognitive tests**
 - Reaction time test
 - Range: •
 - 50-2000 ms
 - median 527 ms
 - For information processing \bullet speed

Discussion

- Middle or middle-to-older aged PLWH may have compromised executive function
- They also have increased randomness in their motor activity at smaller time scales
- Increased randomness at larger time scales (i.e., circadian dysregulation) links to lower executive function in PLWH
- Further studies should examine whether drivers of aging (e.g., inflammation, immune activation) and consequent multimorbidity in PLWH underlie the observed association in PLWH

References

[1] Goldberger *et al*. **Proc Natl Acad**

 α_1 and α_2 represent the scaling exponents in two timescale regions (<1.5h and 2-10h)

- *: Significant decline over time
- †: Significant difference in the rate of decline between NCI and MCI
- ‡: Significant difference in the rate of decline between MCI and dementia stages
- §: Significant difference in rate of change between the subset with AD pathology (path AD) and the remained subset (|| for p < 0.1)

Presented at AIDS 2022 – The 24th International AIDS Conference

UK Biobank

- >0.5 million participants
- >0.1 million with actigraphy
- Ascertain of PLWH [7] ۲
 - HIV serostatus
 - ICD or self-report

This research has been conducted using the UK **Biobank Resource under Application Number** 33883.

• median 3

CFAR

<u>PL:</u>

HARVARD UNIVERSITY CENTER FOR AIDS RESEARCH

Developmental Award To

P30AI060354-21

For visual episodic memory ۲

121

Pilot Award To PL:

R33AG067069-01

- *Sci USA* 2002, 99, 2466-2472 [2] Hu et al. Phys Rev E Stat Nonlin Soft Matter Phys 2001, 64, 011114 [3] Li *et al*. *Neurobiol Aging* 2019, 83: 21-30
- [4] Hu et al. Proc Natl Acad Sci USA 2009, 106, 2490-2494
- [5] Hu et al. **Neuroscience** 2007, 149, 508-517
- Li et al. Alzheimers Dement 2018, [6] 14, 1114-1125
- [7] Li et al. Nat Sci Sleep 2022, 14, 181-191

Contact

Peng Li, Ph.D., E-mail: pli9@bwh.harvard.edu

